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ON OBSERVER PROBLEMS FOR SYSTEMS
GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS +

J.S. Barast and A. Bensoussantt
tUniversity of Maryland

t1tUniversity Paris Dauphine
and
INRIA

1. Introduction

The problem of observers has been introduced in the control litera-
ture by .D.-Luenberger [15]- Let us consider a dynamic system which is
deterministic, but whose inital state is unknown. An observer is a model
which mimics the behavior of the physical system, and in paricular its
state becomes closer and closer as tme evolves (o the state of the physi-
cal system. There is a great deal of freedom in such a design and it is
important 1o investigate various kinds of observers.

Since, after all, the observer prblem presents analogies with the filter-
ing problem (estimating the state of a stochastic dynamic system), although
there are no stochastic disturbances, it is natural to exploit the analogy.
This idea has been used by J.S. Baras and P.S. Knishnaprasad [4] and leads
to an observer which is different from Luenberger's observer. It presents
several advaniages. In particular, it is obtained in a constructive way and it
has robustness properties.

From the very definition it applies identically when there are distur-
bances, whereas the Luenberger observer is strictly limited to the determin-
istic case and is not obtained in a constructive way. Also it may apply 1o
more general cases, in the sense that when the Luenberger observer exists,
the observer anising from the Kalman filter theory exists as well.

In this anticle we consider dynamic systems whose evolution is governed
by a parabolic parual differential equation, or more generally a differential
operational equation in the sense of J.L. Lions [12]

The Luenberger theory has been extended to infinite dimensional sys-

tems (see in particular M.J. Chapman and A.J. Pritchard [6], A. |chikawa S

and AJ. Priichard {10]). We explore here the observer based upon Kalman
filier theory.

Let us discuss here an eumplc to present the main reults of the paper.
Let £2 be a smooth domain of R". Consider the P.D.E.

*pPartial Sponsorship from: AFOSR-870073, NSF ECS-8219123,

NSF INT-84-93793, 8 b
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N s_t (l'l)
ol ¥x,0) = y,(x) € H = L),
A where /™ = df2 denotes the boundary of £2. The state y, is unknown. If in-
A8 stead of (1.1) we were to have
v.g h
o
'y dy
::E" 5‘:--Ay+/ly=0, A>0,
W
o |
RO ovip 0,
H (1.2)
;|. yx,0) = y,, -
)
e then the system is stable and y(x, T) 40 as T - o, In other words, whatever
Y, is, the state comes closer and closer to 0 as T evolves and thus becomes
N “more and more known.” An observer could be simply the model (1.2) itself
‘ j'. with an arbitrary value of y, independent of the available observation.
<. Such a stability property is not present in the model (1.1). Let us
> assume that we observe
s z =yl .1y
L:Ra" i.e., the value of the state on the boundary.
,§: An observer in the spirit of Luenberger would be the following model
:": : om
iy — - = i
::.J'. ot Am 0 ing2 N
2 2
.:; . .a_': - (z - m),- ’
i (1.3)
b m(x,0) = m,(x),
o
? where m,, is arbitrary. The error 17 = y — m appears as the solution of
e an :
! - -
$ 2 J¢ - 4an 0 ing2,
el
v o1
el
'.:f: o’ ”I r 0.
o: (1.49)
;" ”(I, 0) = f’o(X) = Yo — m, .
z:r' Multiplying (4) by 7 integrating over £2 yields
e
)
‘X d
¢ o [ma s [Onta+ [nrar-o0.
" n n r
;.: But
\I.
Yo' Jontax + [nrdrzp[nax, p>o,
" Yy n r o]
0,
N,
:5 " T il s A [Py OGS - WA Ce e 2 el LAY 0 U W 0 10 %0 s Yy a7 80, 0% 05 10y Wi 4T W) f,“qp i\
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and thus

[P nax < ¢,
n

which proves the exponential decay of the error.
The theory developed in this paper leads to the following observer:

gﬂ'z"" f”(" & 0z 0 -m n) &,
om
a—; r = 0’

(1.5)
m(x, 0) = m(x),

o
mu, £, 1) appears as the solution of a Riccati equation, connected

to a filtering problem, or by duality to a control problem. We study the type
of control problems which may be introduced in order to derive exponen-
tial decay for the error.

2. Setting of the Problem
2.1 Notation and Assumptions

Let V, H be two separable real Hilben spaces, such that identifying H
and its dual H’, one has

VcH=H cV @.1n

each space being dense in the next one with continuous injection.

We denote by ((,)) " ¥ and (, ) || the scalar product and norm in
V, H, respectively. For another Hilbert space X we shall use the notation
(,)x and | |y. We denote by <, > the duality V, V".t

Let A(r) be a family of operators such that

A() € L™ (o0, = V; V)
(2.2)
CA(IN, 0> + AR 2 alip?, VeV,

a>0, A20, V1.

We consider a dynamic system whose evolution is governed by the dif-

ferential operational equations (see J.L. Lions [12])

%MW).V -/ o)

o) = y, .

t More generally, <, >y will represent the duality between a Hilben space
X ands its dual X’ and Ay the canonical isomorphism between X and X"

A A R L R e oy
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- where
o f € Ly(o,°; V') given, (2.4)
9,
)
f:g:. Yo € H, y, unknown. 2.5)
b
' It is well known that for any y,, (2.3) defines the state y() in the sense
B 2 dy 2
" y € Ligclo,= V), 7€ Ligclo,= V). (2.6)
X
q: We perform an observation on the state y(-) as follows:
. 2() = C(Hy(n, 2.7
e where - _
; C() € L (0, LV, F)),
)
I' . .
> F being a given Hilbert space.
b 2.2 Dcfinition of an Observer
<
i)
) An observer is a function m(r) measurable with values in H, whose
. value can be computed at each time ¢ in terms of the known data (in parti-
o cular the observation z(-)) and such that the error
\
R e(n) = y(1) - m(z)
N, -
K, satisfies

le()] - 0 astee,

Therefore m(t) will reasonably estimate the state of the system at time
h t (at ¢ = O this estimate may be very bad, but it improves more and more as
: t - 00, it is of course nice to get an exponential decay for le(s))).
‘ This problem has been extensively studied in the finite dimensional
case, starting with the seminal work of D. Luenberger [15). For infinite
0 dimensional systems, the Luenberger observer has been exended in a natural
fashion, however the research has mostly concentrated on the design of com-
pensation (i.e., use the possibility of controlling the system, so that the
global system made of the system itself and of the observer is stable).t
o While the control is generally present in such contexts, it is worthwhile to
. separate the observer problem from the compensation problem, and consi-
5 der cases similar 10 (2.3), (2.7) when there is no control. In paricular,
o nothing can be done to stabilize the system itself.
o We shall thus prefer to introduce observers constructed in a different
{ way, following ideas introduced by J.S. Baras and P.S. Krishnaprasad (4],
which consist in antificially randomizing the problem and using Kalman fil-
ter theory for infinite dimensional systems.

™

o 1 For dezails in this direction see M.J. Chapman and A.J. Pritchard (6],
) A. lchikawa and AJ. Pritchard [10).
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2.3 A Randomizing System

The theory of linear stochastic infinite dimensional systems has attracted
a considerable interest in the literature. One of the main objectives has been
to develop a rigorous theory of the Kalman filter applicable to distributed
parameter systems. Among the main contributions one can refer to A.V.
Balakrishnan [1], [2], A. Bensoussan [S5], R.F. Cunain [8], R.F. Cunain
and A.J. Pricchard [9].

Let us describe briefly what we shall need for our purpose. Let (£2, 3, P)
be a probability space equipped with a filtration 3!, satisfying the usual con-
ditions.

Let E be a Hilbent space, a generalized E Wiener space is a stochastic

process indexed by an element e.(-) € L?, (0, =; E’), denoted by ;" (@)

satisfying
Mi®  isaJ! Wiener, Ve, (2.8)
ins -
Eu ytt = [ <e)Ap'e(dp> d2, (2.9)
o
the map e. =4, ° is linear . (2.10)

We assume that such a generalized E Wiener process exists. Similarly
. . . he
we shall assume the existence of a generalized F Wiener process v, = and we

suppose that

4¢* and v}" are independent . (2.11)

Let G(-) € L™ (o, =; L(E; V")) and M(") € L™ (o, =; LF; F)), we shall
consider the stochastic proceses ;1? " and l/,“ 7+ indexed respectively by
v(:) € L2, (0, ; V) and f.(") € L}, (0, e; F’). They are clearly indepen-
dent 7' processes and one has

Ins
= [ <GA G, vd)> dh .

(]

G, G%,

' Hy (2.12)

Eup

Finally, let there be a family of random variables indexed by A € H denoted
by .fh such that

Yh, {" is a Gaussian with mean O, and
ELE - pJnR). P, e wHiH, NN
symmetric, semipositive definite.
&* is independent from 4} and t{ (2.149)
Let 11, 5), 1 2 s be the Green's operator corresponding to A(), i.e.,
nes) € YH, H) and aly = I, s)h (2.15)

is the solution of

da

d‘+Aa = 0,

t>s, a(s)=nh.

0y . u -
L o':' ‘.‘!‘.'0""‘?‘0".'0'!.." N\

VIR AR “p AR
0 \.‘u o "’. ﬁ‘. ¢ 5"'&‘\('1-. (A ’-’5

AT 0, W0 o O TN i X AN N
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s For simplicity we write J¢) = It, o). .
e A stochastic linear system is a process y, indexed by h € H, defined by
> the formula . . e
h .
2 AR CONO IR S (2.16)
q{' ‘
)' where y(¢) is the solution of
’I;‘ . 42 v Vi
, AWy = (), Yo = y,,
St t
; Y, givenin H .
f‘_' . Ld
., We are to be careful in the interpretation of /J,G ek fact,
::"0: consider s 2 G*(s)7*(1, s)h for s < t; it coincides with G™(5)B(s), where yij
::’:'5 is the solution of -
HA B, 4%y =0, By = h
Py 9s e =
‘,‘.‘. and B(s) € L*(0,1,V), hence s = G*(s)"*(1,5)h = e (s) belongs to L¥(o,1; E).
‘ ) S Co o . . ol
v ince y," depends only on the restriction of e. on (o, 1), the quantity 4,
b is well defined for any ¢ ‘e
b We define the observation at time T as follows. Let f, € L}, (o, TUF) 9
o and 77 be the solution of
R ~GheA - O
f_r: (2.18)
4 'h ) = 0.
i > Then one sets
D) ; T G e
e o= [ <f coFm>d + £ 4 W57 L N i)
[4
s
,’:. 2.4 Kalman Filter
' This problem can be stated as follows. Let
L)
? Z - 6(:‘”./. € Lo, T, F)) .
=
3 Find ,
& oA L h
®: % - ED1Z7). (2.20)
; _';‘- Without redoing the theory, for which we refer to A. Bensoussan [5], we
: :l_'.: shall only recall that it can be obtained by solving a deterministic control
N problem related to maximusm likelihuod. We assume that M is inventible as
'f.\ well as P, and set
o
- R« M 'aAeM' € UF. F). (2.21)
N We introduce the control problem

v 4N -.’\. (-..- L}

N My LT T L T A ;
o D’Q ) I‘t. v‘"v".o..'o.l.l.‘.l....'" R"‘.l"o'.'."‘-' '

POt > ——r s T
A \‘lhﬂ,'i .“I“. "‘? () 1,"1\',‘ ] f. . .i".' (R '., I"l'.ﬁ
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e
y : -7-
D
R
n dy
- ditAY = f+Ge, e()e L*o, T, E),
B (2.22)
) ¥0) = y, +¢.
":: in which £ and e(-) aic the Zecision variables.
;!!: We are interested in minimizing the following cost:
. T
cz' JE, () = f [KAge, €> + <R(S - Cy), & - Cy>] dr
° (2.23)
A + (PE 0,
Nt
. where on the nght side of (2.23) the function {(-) is given in Ly(o, T; F).
A4 Define .
S . (2.24) -
:' D, = C'RC,

and consider the pair y(-), p(-) defined by the system of coupled equations
2‘} + Ay + Di(p = f,
* -L , g*p - Dy = RS,

W ¥0) = ¥, - P,p(o),

’.‘::' (2.25)
i pT) = 0.

L)

5
’.

B! Then the optimal control is given by

N én) = -Ag' G (p()
o (2.26)
o)) & = ~P,p(o) .

® The decoupling theory leads to the Riccati equation (written formally)

Ry 2+ AP + PA* + PD,P = Dy,

X (2.27)
~)

‘~$ P(o) = P, ,

and the linear equation

o :%+Ar - f 4+ PC*R( - Cr),

ny (2.28)
"5 ro) =y, -

It can be proven that if Of € Ly(o, T; F) is defined by

7

< T
. [ <t .pdt = (-0, V¢,
3 °

LW - Ona DG 0 ! X AL R LR,
.......... WY, A et R R A RS O .!".o NSO
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then the quantity (2.20) is given by

ke
- L G,

3. Study of the Opcrator P(T)
3.1 Dcfinition of P(T)
Consider the coupled system

92 , a6 + Dj - 0,

—%+A‘ﬁ—02d=0,

a(0) = -P,po),

.. 3.1
ATy = k.

Then we set
P(TYh =« -&(T). (3.2)

The system (3.1) is related to the following control problem:

5—? + A(a = Ge,

alo) = &, (3.3)
h )] ~1 T 2
Jr(f.e()) = T{(Po £, &) + f {lef? + <D,a,a>] dt} + (h, a(T)) .
We deduce easily that

¥ (P(T)h, ) = - inf JrG.en. (3.4)

We can also characterize this quantity in a different way. Consider the con-

trol problem
di | 4= . 20, T; F'
—d‘+Aﬂ- C¢-. ¢.€L(O|TvF)v

(3.5)
AT = h,

and the cost

- T T
J1@.() = (PB)Bo) + [ <R '¢.,0.>d + [ <D\ f>ar.
Then one has also

(P(TYh, k) = inf JH(@.()) . (3.6)

d ) COOGOUGIGIGN SN 3 W
0'.'»“‘. R ‘O“..;.A.'!‘l‘t'l““'.’..0.!'3.!‘0.ﬂ.0."l..“c'!.1. RO DOOOON 1"""“' i \0" "
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" 3.2 Detectability and Stabilizability
Y
¥
:;: nm‘;smox 3.1. We shall say that the pair A(-), C(:) is detectable if V &,
j"‘ 3¢. * such that
& T Tha2 T T2
[ W't a+ [ ' a < k, <))
Q" o o
f" independent of T, where ﬂT‘h represents the solution of (3.5) comresponding
e togl . D
‘o
b In the stationary case, i.e., A, C independent of time, it is sufficien.
" to assume the following
-+,
% DEFINITION 3.2, We say A¥, C* is stabilizable if V h, 3 ¢" € L¥(o, o; F?)
v such that the solution " of -
1y . éLh * % h
. d, + A 7“ = C ¢o N
- r"(0) = h,
.
j.'_ satisfies y* € L%(o, oo; H). D
: PrROPOSITION 3.1. In the stationary case, if A*, C* is stabilizable, then 4,
. C is detectable.
N .
-’. [
- Proof. Define
Y T.A h h
R ot = AT-n, Fro - ra.
Then clearly ,BT"'(:) is the solution of (2.5) corresponding to ¢.T'h(r). and
L)
4 T a2 T a2 )
b J Witia = [ wta < [ W a,
: 0 P 0
! T, 2 2
° [ W*ta = [ Wila < [ pfa,
ol (4 (4 [
:— and the desired propenty follows. 0
o
_E THEOREM 3.1. Assume that A(-), C(:) is detectable, then
2 Py S P (3.8)
’,
:_"- Proof. 1t follows from (3.5) that
g : ) T, " T .
. YBOR+ [ <A prdr = Fit+ [ <BC0.>ar.
- e o
) $: Hence
o : 7 : T . T
) YR+ af 0 dr < Fmts [<BCro>d + Af 87 ar
ﬁ.- o [ (4
L
>
e

S T L LS N S NN e
WP C A A AT G AC AT

AR N S T R P ) ‘-_\"‘.\.' A " ) OO 0T X 0 AL oY “
AR IaL h,..’.t,..t,‘.c‘gﬁ‘-_,o,3..}0..‘f,|‘i.'fl.;w...Jr,ﬂ_.c.m,_M}.lh IR O ot L

" -t
Yy c AT A
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:"‘:; and the detectability condition implies immediately

T
Wi Wron <k, [w*va < k.
RN [

Therefore from the definition (3.6) one has
~p, T.h
o (P(THh, hy < T30 7y < K.

.,::v. This and the fact that P(T) is symmetric positive semidefinite implies the
B desired result. D

vy THEOREM 3.2. If there exists a family J{-) € L™ (0, =; £(F; V")) such that

X (AW + MNCE, &> 2 a, 51 3.9 -
ol then the pair A(-), C(-) is detectable.

,&.“,} Proof. Indeed pick the feedback

o 9. = -TI'B.

The corresponding trajectory is given by

‘:" )
2P

-?g + A*+C'T*g =0, BT)=h,

- g e A e 3T
z
”
-~

N and thus /07||,3|'2d1 is bounded by a constant independent of 7. The de-
I sired result follows. 0
2
e
::::.: 3.3 Invertibility
AN
\.:-. We turn now to the question of invertibility of the operator P(T). We
A shall need another propenty. Consider the dynamic system
L
o da
RS PR Aa = Ge,
e (3.10)
W a@) = §.
a DEFINITION 3.3. We shall say that the pair A(), G(-) is controllable if
@ T.A pa
R V h,3 "% and & ' such that
e
7 T2 T o2 T 2
i s [errla s [ aTrtar s o, Ga1)
o o [ ]
\’
- and
‘ “ a’MT) = &, 3.12)
*J.-
z’* where a”-* designates the solution of (3.10) corresponding ¢T"' and e’ -*.

The constant L, is independent of 7. D

RS o R QN T TV, 110, 1y O R RY QU LY Vg 17y 10y APy ¥y R S e AT
B Nt R X X R I RO R IR o eI B K DKM s DO
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We can give an example of controllability (probably the only one really
implementable).

PROPOSITION 3.2. Assume that
D, is invertible . (3.13)
Then the pair A(-), G(-) is controllable.

Proof. Let

de, ,
#n € Lo, V), == € Lio,=V), ¢,0) = h.

We set -
alh@)y = ¢(T-1), &7 = alho) = on(T)

and
T.
eTh() = AL G D1y (d—Z—tiaf A(naT (1) . (3.14)

Then

"

oT k2
>

T do .
C = @R = 2f (g, 37 dr + 2

.o d¢
< 2o+ 2] (00, 72) ar,
o

T T T -
Jlam i = [ga-n2ar = [0t d < [ 10,2 dr.

and

;
[ e hy ar

o

1A

[ [ el
4 [

< C[:’f—l%ﬁ“;w + f“n¢,,u? er.

L4

Finally from (3.4) we obtain

da’
dt

GeT4(r) = + A(naT A

and
a’M(T) = h.

The desired result has been established. O

REMARK 1. As is well known (cf. R. Lattes and J.L. Lions [11]), we cannot
solve a priori the backward problem

%‘;—J,Aa - Ge, a() - h. (3.15)
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L The situation is different from ordinary differential equations. The pro-

, blem (3.15) (for given e) is a priori ill posed. We refer to J.L. Lions [14]

" for a detailed study of these ill posed problems in the context of control

e theory. O

A3

>~ We shall now consider control problems similar 1o those described in

et Scction 3.1. The response is described by

)
A% da
L~ ‘e =

‘_::, dl+Aa-—Gc, .

»."J; (J]())
Hay

"‘ a(o) = :

1:“0'

) We impose the constraint

. aT) = A (3.17)

s
" and minimize the cost (recall that P, is invertible (cf. Section 2.4)) -
;i'- l T
B K1 e() = (P)'E8) + [ liel? + <Dya, a>) dr. (3.18)

o

" Note that (3.17) must be considered as a constraint and not an initiul
= condition.
’_‘;‘:' THEOREM 3.3. Assume that the pair A(-), G(°) is controllable. Then the con-
; trol problem (2.16), (3.17), (3.18) has a unique solution. There exists a

: unique pair @, J such that
>
W da — -5

o d'+Aa+Dlﬁ’=0.

i dp = _

J —£+A‘ﬂ—Dza’=0
5 "\' —_
P @) = -P,p).
-2 (3.19)
R~ &T) = h,

NN

® and the optima! :zontrol is
r'q E

1*& - =1 %, B

AT &) = -Ap G (0B,

‘Gl _ _ (3.20)
. . §& = =P flo) .

P

, .‘\-;".', Proof We follow the technique introduced by J.L. Lions [13} to deal with T4 e
this type of ill posed problem. We shall penalize the constraint (3.17).
:‘J‘: K on ‘j\& 9

5 a. Existence and Uniqueness of the Optimal Control ;',s. (le :)“""“ L
}, Let I, = {e(-), {|a(T) = h}. By the controllability assumption I, is “‘id«“ﬁ wke
': not empty. It is a convex closed subset of the Hilben space Ly(o,T, E) x H
»ﬁ: and the functional (3.18) is a coercive quadratic functional. Hence the exis-

',G' tence and uniqueness of the optimal control €(), £.
:o’i.

' e

o4
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b. Necessary and Sufficient Conditions of Optimality

e Consider I, (i.e., I, with A = 0). It is obviously a closed subvector
o space of L3(o,T; E) x H. Noting that () + Ae(-), £ + AZ V e(*), & be-
:j longing to I, we deduce easily from the relation
Dt - -
‘ K3 + AL, &) + Ae()) 2 K3 @ &)
1
‘o that the following condition must hold
4
! 17/_ T T /
o (PHES + [ <agee>di + [ <D a>adr - 0, (3.21) /
RS o [
.'.:‘ v f, e(-) in Eo
T a being the corresponding solution of (3.16). -
\ ‘ and
o @ designates the optimal trajectory.
: This condition is sufficient, since V E, é) e E,, E - z €()-e()e E,.
s Hence
,
'.:::‘ KT(':’ e( )) = (P g J- <AEe e>dr + .r <D’a a> dr /
N3
e and - _
o Kr & &) > KiE &) .
[
.,;--
o c. Adjoint System. Uniqueness
' Assume that we have a solution of (3.19). Then define &(-) and & b\
e (3.20). Let us show that it is optimal. Clearly & is the trajectory corre-
™ sponding to the control &(-), £ and it is admissible (belongs to /7,). It is
K- easy to check that it satisfies (3.21). It is thus the optimal control and
.\,,:: therefori ), & alid a(-) are uniquell defined. It is also the case of f0)
;V". and «(dff/dr) + A®B. This implies that £ is unique as well.
h_’- d. Adjoint System. Existence
A
:;:_. It remains to prove the existence of the pair @, B solution of (3.19).
S The penalty technique is now used. Consider the functional
e Kr“e e() = K16, e() + Fla(T) - i (322
:_':_, Then the control problem (3.16), (3.22) becomes classical, and there exists
) a pair @¢, ° solution of
o7
s J
"
' ‘i
b ~!
L]
{
"-’
"‘ Y o o 3 .
\ X0 u.. l.c '.o‘l. .nu,.‘ e A .n"' W ".o'l‘v‘ LA NS A N " e Tt .9.";}.9“ A
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da,
d'—"+Aat+D|ﬂt-0.
43c

+ A°B, - Dia, = 0,

a((o) - —Poﬂ[(o) ’

. (3.23)
Be(T) = z(a(T)-h),
and the optimal control is
-1
€ = -Ag G*ﬂc ’ gt‘ = oﬂc(o) .
Now from
Ki“E e) < K, eThy < c,
we deduce
T T
I'E[IH s f |e¢-l§ dt .r <D2a¢~, a,_.) dt < Ch
° ° (3.24)
Fla Ty -k < C,,
and since a, is the trajectory corresponding to e, and £, we have
f ”d: uat di < Cpy (3.25)

[

(this last constant may depend on T). Now for any &, e(-) we have (neces-
sary condition of optimality for the problem (3.16), (3.22)),

T T
(P;lfpf) + f <Age.,e> dr + f <D,a,, a> d:
° ° (3.26)
+ Y@ Ty -haTy) = 0.

Let us pick £ = .fT". e = e7-* where k is arbitrary in H. We deduce
from (3.26) and the estimates (3.24), (3.25), that

l(at(T) - h

p: "]l SChru = G

since in this context A, T are fixed. From the Banach-Steinhaus theorem
follows that (a.(T) - h)iel € C) 1. Therefore, also using (3.23), one has

T 2 T
(3
! ”dT " dr + ! W dr < Cpy (3.27)
With the estimates (3.24), (3.25), (3.27) we can extract a subsequence a,,

B.. converging weakly to (d&/ds), (43/4:), in Ly(o, T; V’). We obiain easily
that &, f is a solution of (3.19), the proof has been completed. D
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PL
O THEOREM 3.4. Under the assumptions of Theorem 3.3 one has
" AT) = Tk, (3.28)
4 0}
o where Q(T) € £(H; H) symmetric positive semidefinite. Morever,

‘)
)
K Ry S C. (3.29)
_.\-, Proof. Consider (3.23). the quantities a,, f, are linear continuous functiors .
)'.t of h. Hence we can write b e
b Pe(T) = Gk . (3.30) AW &
1, — e e - —————————————
18 . o )
;~, where it is easily seen that O (T) € &H, H) symmetric, positive semide-

finite. Moreover, one easily computes

o, .
e (0 KTCC ) - @ T h). 33y
e e

I'

’;j Since the left hand side increases as £ decreases, it follows that

Q,(T) is an increasing family of symmetric positive semidefinite operators

. in £(H,; H).
. But

I8 , .

. Ky€.e() = Ki€ e() V& e()inT, .

2,
X _;: Therefore
; 0T by € inf K& )
p fetre T (3.3)
K
"?\ < K;(fT'h-CT'h) < C, .
"o

“ .
b independent of T and €. Necessarily O(T) T Q(T) € £(H; H) positive
J semidefinite and
X Ry S C (3.33)
"5

*:} independent of 7. But

>

' inf K3“¢. e()) »  inf K7 e() . (3.34)
.“ E.e() Ee()eT,
:-:'.': Indeed,

,'.}

-‘;It T T - 1‘.
;i (P;’-f;./% + [ e+ [ <Dio,,a>d + Fia(T)- 47 ey ‘”fa

0 0 . W

gy : \\\""D / Iy T T - ;\// .
Py LT = < (PEE) + [ BRar + [ <2 ar,
-f: ° °
.,.: and from the weak convergence
3 o 7 T
o S lim{(P, &, &) + f le 2 dt + f <Da,, a >dr}.
:.,' [ [
"u‘
;'.::

":, g
1“‘! wAr '
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U
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This implies the strong convergence of &,, e,. a,, to £ & @, and also that
(1/e)la (T) - i 0.1 Therefore (3.34) is demonstrated and thus

inf K7 e() = (O(T)h, h). (3.35)
$eC)erlr,

Moreover, since B,(T) -»ﬁ(T) in H weakly, we deduce the property (3.28),
too. D

REMARK 3.2. Before it was used in wreating ill posed problems, the penalty
technique (which goes back to Courant [7]), has been widely used as an
approximation technique for the control of systems govemed by panial
differential equations, see A.V. Balakrishnan [3], J.L. Lions [13]). O

We can now compare Q(T) and P(T).

THEOREM 3.5. Assume that A(‘), C(*) is detectable and A('), G(') is control-
able. Then one has

OMPT) = PMAT) = 1, (3.36)
O TMewony € 4. POy S P (3.37)
where p, ¢ are constants independent of T.

Proof The property (3.37) has already been proven. The property (3.36)
follows by comparing (3.1), (3.2) to (3.19), (3.28). Indeed in (3.19) set

h = —=P(T)h. Then we have & = & and 73 = /9 (by uniqueness) and

BT) = h = QTY-P(THh) = QTP(T)h.

A similar proof is made to prove that PQ = 1. O

4. Observer Based Upon Kalman Filter
4.1 The Model

Motivated by the form of the Kalman filter see (3.28)), we shall de-
fine the observer by the solution of the equation

:—':'—+Am « f + PC°R(z - Cm), 4.1

m(o) = m,
where m,, is arbitrary and z is the observation corresponding to the state (2.3).

The writing (4.1) is somewhat formal, since P is not defined on V'. In
fact, we shall give a meaning to

y-m-=17n79, 4.2)

t This follows also directly from the fact that Ka,(T)-h)/£] is bounded in £.

TR T T Y o
R R R N
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o
a
w
s where 77 appears as the solution of
r‘O '.
2 27 4 (A+PDY = 0,
o (4.3)
‘ (o) = Yo =M, .
- ,f The solution 7(r) of (4.3) is defined by duality. Indeed, considering (3.1)
”.:u' we see that the equation
l!"‘:; a5
1! 2
o @t WD -0,
AN 4.4)
T
€3 oM ﬁ (T) = h A
<,
= has a solution in the functional space
o -
’
X ’ Wp(o,T) = {¢ € L’o,T; V), %e L*(,T; V), Pp € L*(o.,T; V)}. (4.5)
i Then the value 7(7) is defined by
T
w KT k) = (B (0),y,-m,), Vh, (4.6)
s
s which defines 7(T) uniquely in H.
. Our problem amounts to studying the behavior of 77(7) as 7= 0.
.
1)
:j . 4.2 Estimates
4
>
‘ We shall prove the following (main) result.
:"_\ THEOREM 4.1. Assume A(:), C(-) detectable, and
AN
:; <Dy(v, v> 2 kvj} VveV.t (4.7)
)
u Then one has
- M) - m) € Cly, -mle™ ., ¥>0. (4.8)
. -_..0
Ny “',; Proof Considering the system (3.1) and the relation (4.6), we know that
L} N )'
o T T T T
® (P, ) = (PB ©0.F () + [ <DB (5).  (5)> as
o ’ T
Yo + [ <D.PB (), PET s> ds
Yo o
» " where we have written ﬁ" (1) instead of £ 10 emphasize the dependence on T.
= Recall that P§’ = -&.
s
-"" t Of course if <D)(f)v, v> 2 klivil (4.7) holds as well as the controllabi-
o lity propenty (see Proposition 3.2). But (4.7) is weaker.
L
J
A
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In a similar manner we can write the relation

T
Pk = (POF . @) + [ <D ()8 (5)> ds

1

. (4.9)
+ [ <D, (5). PA (s)> s ,
]

which holds for any ¢ € (o, T). Therefore it follows that

Lpaf 0. ) = <Duf @), F >
+ <Dy (P (1), POS (1)>
and from (4.7)
Lrws 0. F w) 2 Wb wF . (4.10)
Note that, from Theorem 3.1 one has
(PF . 8 () < p (P .
Therefore (4.10) implies
2 wg o 2 2P s 02

Hence

(P (0.5 (0) € (P WP < pe™T 2 (an,

Therefore, if
(P.g.8) 2 v, K,

we have

W < &7 pa

From (4.6) it follows that
T S by - ml\E € *2P7 1
o

4.3 Example
Let us turn to the example considered in the introduction. We shall take
H e« LY2), VeHW,
E«<H, Ge<1, henceD =1,

F = L3N, C = y = trace operator .

e . e - NP ~ -y e - -~y v
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;" The system of optimality (3.1) looks as follows:
p oa - oa|
:;E'. ar - b4+ B -0, 37|, 0.
)
o 3 i
g g -0 3 -
&) = -P,B0),
) 4.12)
oy
;g{ The assumptions are satisfied. Indeed, the detectability condition is
sansfied, since using the stationarity we can apply Proposition 3.1, and we
" have seen that the system
e
{
Py X apeo, -
" dt
D
.'.. QZ
! ovl. * " =0.
v o) = h,
‘-' has a solution in L2(o, =; V).
';- We can check, at least formally, that the operator P(r) will sausfy the
' equation
o 0 d p, 9, (9 9P
: (371’2. {] + (E;Pz. ax‘) + (ax, 'ax,) + leP.,’dr
)
&) =({) Vz{linH . (413
J
e Representing P(1) by a kemel
R
‘4
&
p 5 P(h(x) = [ P(x, &, 1) WE) af
"“
® yields the equation for the kernel
- oP
_'; 3r AP - A‘P + J‘P(x. noPménd = &x-§), (4.14)
<
f".r r
'34 with the boundary conditions
o, 3
Ry é%-(x.{,r) -0, Vxel inn2,
)
5 or 0, Vie{inl
w 5;:(1.{.1)- . xeféinrl,
ot
Pix. . 0) = P x 1),
e (4.15) \
o Px,{,1) = P,(x,$) (kemelof P,). |

KN The observer has been defined in (1.5) (the writing is formal). |
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¥ REMARK ¢.1. It is important to notice that the assumption (4.7) does not
Lty imply controllability (the situation is not similar to that of ordinary differ-
e ential equations).
,r_:.-
j,, REMARK «.2. It is fair to mention that (1.5) leads to more complex calcu-
N -' lation than (1.3), but it is less affected by disturbances. Moreover, it re-
N spects the boundary condition of the initial system.
=
~
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